Novel method to classify hemodynamic response obtained using multi-channel fNIRS measurements into two groups: exploring the combinations of channels

نویسندگان

  • Hiroko Ichikawa
  • Jun Kitazono
  • Kenji Nagata
  • Akira Manda
  • Keiichi Shimamura
  • Ryoichi Sakuta
  • Masato Okada
  • Masami K. Yamaguchi
  • So Kanazawa
  • Ryusuke Kakigi
چکیده

Near-infrared spectroscopy (NIRS) in psychiatric studies has widely demonstrated that cerebral hemodynamics differs among psychiatric patients. Recently we found that children with attention-deficit/hyperactivity disorder (ADHD) and children with autism spectrum disorders (ASD) showed different hemodynamic responses to their own mother's face. Based on this finding, we may be able to classify the hemodynamic data into two those groups and predict to which diagnostic group an unknown participant belongs. In the present study, we proposed a novel statistical method for classifying the hemodynamic data of these two groups. By applying a support vector machine (SVM), we searched the combination of measurement channels at which the hemodynamic response differed between the ADHD and the ASD children. The SVM found the optimal subset of channels in each data set and successfully classified the ADHD data from the ASD data. For the 24-dimensional hemodynamic data, two optimal subsets classified the hemodynamic data with 84% classification accuracy, while the subset contained all 24 channels classified with 62% classification accuracy. These results indicate the potential application of our novel method for classifying the hemodynamic data into two groups and revealing the combinations of channels that efficiently differentiate the two groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical Imaging of the Motor Cortex in the Brain in Order to Determine the Direction of the Hand Movements Using Functional Near-Infrared Spectroscopy (fNIRS)

Introduction: In recent years, optical imaging has attracted a lot of attention from scholars as a non- aggressive, efficient method for evaluating the activities of the motor cortex in the brain. Functional near-infrared spectroscopy (fNIRS (is a tool showing the hemodynamic changes in a cortical area of the brain according to optical principles. The present study has been de...

متن کامل

Activation detection in functional near-infrared spectroscopy by wavelet coherence.

Functional near-infrared spectroscopy (fNIRS) detects hemodynamic responses in the cerebral cortex by transcranial spectroscopy. However, measurements recorded by fNIRS not only consist of the desired hemodynamic response but also consist of a number of physiological noises. Because of these noises, accurately detecting the regions that have an activated hemodynamic response while performing a ...

متن کامل

The Feasibility of Using Wearable Functional Near-Infrared Spectroscopy (fNIRS) to Study Hemodynamic Response during Mental Arithmetic Task

Functional near-infrared spectroscopy (fNIRS) is the promising non-invasive technique for brain-computer interface (BCI) for brain signal acquisition. Wearable multi-channel fNIRS devices that can provide much comport for applications and researches are commercially available in the market recently. In this study, we research possibility of the wearable multi-channel fNIRS device by evaluating ...

متن کامل

Signal Processing in Functional Near-Infrared Spectroscopy (fNIRS): Methodological Differences Lead to Different Statistical Results

Even though research in the field of functional near-infrared spectroscopy (fNIRS) has been performed for more than 20 years, consensus on signal processing methods is still lacking. A significant knowledge gap exists between established researchers and those entering the field. One major issue regularly observed in publications from researchers new to the field is the failure to consider possi...

متن کامل

Polarization of Multi-Relay Channels: A Suitable Method for DF and CF Relaying with Orthogonal Receiver

Polar codes, that have been recently introduced by Arikan, are one of the first codes that achieved the capacity for vast numerous channels and they also have low complexity in symmetric memoryless channels. Polar codes are constructed based on a phenomenon called channel polarization. This paper discusses relay channel polarization in order to achieve the capacity and show that if inputs of tw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014